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Today’s topic



Outline

• Transactions & Concurrency Control

– ACID & Transaction Schedules

– Concurrency control protocols
• Pessimistic

• Optimistic

– Multi-version concurrency control
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Definition of transactions

A transaction (txn, or Xact) is a sequence of actions

that are executed on a shared database to perform some 
higher-level function. 

Transactions are the basic unit of change 

in the DBMS. No partial txns are allowed.
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A quick reminder of ACID

• Atomicity: Either all actions in the txn happen, or none.

• Consistency: If each txn is consistent, and the DB starts 
consistent, it ends up consistent.

• Isolation: Execution of one txn is isolated from other txns.

• Durability: If a txn commits, its effects persist.
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Atomicity and Durability

• A transaction might commit after completing all its actions, or 
it could abort (or be aborted by the DBMS) after executing 
some actions.

• All transactions are atomic.  

– A user can think of a txn as always executing all its actions in one 
step, or not executing any actions at all.

– DBMS logs all actions so that it can undo the actions of aborted 
transactions.

• Durability also relies on logs
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Consistency and Isolation

• Each transaction must leave the database in a consistent state.

– DBMS will enforce some integrity constraints.

– Clearly, no semantic consistency.

• Users submit transactions, and expect isolation -- each transaction 
executed by itself.

– Concurrency very important for performance: interleaving actions 
from different transactions.

– Net effect identical to executing all transactions one after the other 
in some serial order.
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A note on concurrency
• Several transactions arrive at (almost) the same time

• Need to execute in parallel to fully utilize hardware
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T1:

T2:

T3:

R(A) R(B) compute-something W(C) COMMIT

R(A) R(D) compute-something …R(E) 

R(E) compute-something …R(D) 

User writes SQL queries.
Translated to actions!



Schedules

• The DBMS gets as input a set of transactions and executes a 
schedule.

• Schedule: a list of actions (reading, writing, aborting, or 
committing) from a set of txns

– All actions appear in the schedule

– The order in which two actions of a transaction T appear in a 
schedule must be the same as the order in which they appear in T. 
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Example

T1: transfer $100 from B’s account to A’s account.  

T2: credit both accounts with a 6% interest payment.

• There is no guarantee that T1 will execute before T2 or vice-versa, if 
both are submitted together. 

• Actions of two transactions can interleave!

• However, the net effect must be equivalent to these two transactions 
running serially in some order.

T1: BEGIN   A=A+100,   B=B-100    END

T2: BEGIN   A=1.06*A,   B=1.06*B   END
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Example (Contd.)
• Consider a possible interleaving schedule:

• This is OK.  But what about:

• The system’s view of the second schedule:
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T1: A=A+100,   B=B-100   

T2: A=1.06*A,  B=1.06*B

T1: A=A+100,   B=B-100   

T2: A=1.06*A, B=1.06*B

T1: R(A), W(A),   R(B), W(B)

T2: R(A), W(A), R(B), W(B)

Time



Scheduling Transactions

• Serial schedule: Schedule that does not interleave the actions of 
different transactions.

• Equivalent schedules: For any database state, the effect (on the set of 
objects in the database) of executing the first schedule is identical to 
the effect of executing the second schedule.

• Serializable schedule:  A schedule that is equivalent to some serial 
execution of the transactions.

If each transaction preserves consistency, every serializable schedule 
preserves consistency.
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Anomalies with Interleaved Execution

• Reading Uncommitted Data (WR Conflicts, “dirty reads”):

• Unrepeatable Reads (RW Conflicts):

• Overwriting Uncommitted Data (WW Conflicts):
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T1: R(A), W(A),   R(B), W(B), Abort

T2: R(A), W(A), C

T1: R(A),  R(A), W(A), C

T2: R(A), W(A), C

T1: W(A),  W(B), C

T2: W(A), W(B), C

Time



Aborting a Transaction

• If Ti is aborted, all its actions have to be undone.

• Cascading aborts: If Tj reads an object last written by Ti,  Tj

must be aborted as well!

– Alternative to avoid cascading aborts: If Ti writes an object, Tj can 
read this only after Ti commits.

• DBMS maintains a write log, in order to be able to undo the 
actions of aborted txns.

– Also used to recover from system crashes:  all active txns at the time 
of the crash are aborted when the system comes back up.
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Conflict Serializable Schedules

• Two schedules are conflict equivalent if:

– They involve the same actions of the same transactions

– Every pair of conflicting actions is ordered the same way

– i.e., we can transform one into the other by swapping non-conflicting 
adjacent operations

• Schedule S is conflict serializable if:

– S is conflict equivalent to some serial schedule.

– Intuition: You can transform S into a serial schedule by swapping 
consecutive non-conflicting operations of different transactions
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Example
• A schedule that is not conflict serializable:

• Precedence graph:  One node per txn; edge from Ti to Tj if Tj

reads/writes an object last read/written by Ti.

• The cycle in the graph reveals the problem. The output of T1 
depends on T2, and vice-versa.
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T1: R(A), W(A),  R(B), W(B)

T2: R(A), W(A), R(B), W(B)

T1 T2

A

B

Dependency graph

a.k.a. precedence graph



Precedence Graph

• Also known as dependency graph/ serializability graph

• Precedence graph:  One node per txn; edge from Ti to Tj if Tj

reads/writes an object last read/written by Ti.

• Theorem: A schedule is conflict serializable if and only if its 
dependency graph is acyclic
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Outline

• Transactions & Concurrency Control

– ACID & Transaction Schedules

– Concurrency control protocols
• Pessimistic

• Optimistic

– Multi-version concurrency control
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Concurrency protocols

• Two-phase locking (2PL)

– Pessimistic approach

– Assume txns will conflict! 

– Acquire locks on items before accessing them!
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Lock-Based Concurrency Control

• Transactions acquire locks before reading and writing

• Locking protocol guarantees that schedule will be conflict serializable 
(correct) if it completes

– Deadlocks are possible

• Locking granularity can be anything

– Tables, indexes, pages, records
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Lock-Based Concurrency Control
Two-Phase Locking (2PL) Protocol

• Rule 1: Each txn obtains

– S (shared) lock before reading

– X (exclusive) lock before writing

– Sometimes also called read/write locks

• Rule 2: A txn cannot request additional locks once it releases any locks.

• 2PL allows only schedules whose precedence graph is acyclic => serializable.
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Example schedule with locks:
T1:  S(A) R(A) S(B) R(B) 
T2: X(C) R(C) W(C)  S(D) R(D)

Time

#
 o

f 
Lo

ck
s

2PL

Time



Lock-Based Concurrency Control
Two-Phase Locking (2PL) Protocol

• Rule 1: Each txn obtains

– S (shared) lock before reading

– X (exclusive) lock before writing

– Sometimes also called read/write locks

• Rule 2: A txn cannot request additional locks once it releases any locks.

• 2PL allows only schedules whose precedence graph is acyclic => serializable.

Strict Two-phase Locking (Strict 2PL) Protocol

• Rule 3: All locks released when the txn completes.

• Strict 2PL additionally simplifies transaction aborts

– (Non-strict) 2PL involves more complex abort processing.
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Deadlocks

• Deadlock: Cycle of transactions waiting for locks to be released by 
each other.

• Two ways of dealing with deadlocks

– Deadlock detection: detect and resolve deadlocks when they are created.

– Deadlock prevention: never let deadlocks happen.
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Deadlock Detection

• If a lock request cannot be satisfied, the transaction is 
suspended and must wait until the resource becomes 
available.

• Create a waits-for graph:

– Nodes are transactions

– Edge from Ti to Tj if Ti is waiting for Tj to release a lock

• Periodically check for cycles in the waits-for graph
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Deadlock Detection (Continued)
Example:

T1:  S(A) R(A)          S(B)
T2: X(B) W(B)               X(C)

T3: S(C) R(C) X(A)

T4: X(B)

T1 T2

T4 T3

T1 T2

T4 T3
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Deadlock Prevention

• Assign priorities based on timestamps. 

– Earlier timestamp → higher priority

• Assume Ti wants a lock that Tj holds. 
Two policies:

– Wait-Die (“old waits for young”): 

• If Ti has higher priority, Ti waits for Tj. Otherwise Ti aborts

– Wound-wait (”young waits for old”): 

• If Ti has higher priority, Tj aborts. Otherwise Ti waits

• If a transaction re-starts, make sure it has its original timestamp
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Fixed vs dynamic databases

• Fixed tuples

– Set of tuples is fixed

– Can update, but no inserts/deletes

– Can lock all related tuples
UPDATE employees 

SET salary=salary*1.2 WHERE age>60

• Dynamic databases

– Can insert/delete tuples

– Cannot lock all related tuples

– INSERT INTO employees(name,age,salary)

VALUES(“Superman”, 62, 10000) 27



Dynamic Databases

• If insertions/deletions are allowed, then even Strict 2PL cannot assure 
serializability

– T1: Print the oldest sailors with rating=1 and rating=2

– T2: Insert a sailor with (rating=1,age=96), and delete the oldest sailor 
with rating=2

– The results may not correspond to a serial execution → not conflict-
serializable!
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Dynamic Databases

• If insertions/deletions are allowed (not only updates), then even Strict 
2PL cannot assure serializability

– T1 locks all pages containing sailor records with rating = 1, and finds 
oldest sailor (age = 71).

– Next, T2 inserts a new sailor; rating = 1, age = 96.

– T2 also deletes oldest sailor with rating = 2 (age = 80), and commits.

– T1 now locks all pages containing sailor records with rating = 2, and 
finds oldest (age = 63).

• Not conflict serializable!!!

29

T1: S(A*) R(A*) S(B*) R(B*) W(C)

T2: X(A’) I(A’) X(B) D(B)



How did serializability break
aka “The phantom menace”

• T1 implicitly assumes that it has locked the set of all sailor 
records with rating = 1.

– Assumption only holds if no sailor records are added while T1 is 
executing!

• Conflict serializability guarantees serializability only if the set of 
objects is fixed!

• Need some mechanism to enforce this assumption.  

– (Index locking and predicate locking).
30



Predicate Locking

• Implicitly lock all records (also new) that satisfy a logical 
predicate

– I.e., rating=1 or rating=2.

• How would you implement predicate locking?

– Very expensive
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Index Locking

• T1 locks the index pages containing the data entries with 
rating = 1 and rating = 2.

– Index needs to be updated after the insert → will fail if locked

– If there are no records with rating = 1, T1 must lock the index page 
where such a data entry would be, if it existed!

• Special case of predicate locking – more efficient 
implementation.
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Are 2PL protocols always good?

• Locking: Conservative approach in which conflicts are 
prevented.

• Disadvantages

– Lock management overhead.

– Deadlock detection/resolution.

– Lock contention for heavily used objects.

• If conflicts are rare, gain concurrency by not locking, and 
instead checking for conflicts before txns commit
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Outline

• Transactions & Concurrency Control

– ACID & Transaction Schedules

– Concurrency control protocols
• Pessimistic

• Optimistic

– Multi-version concurrency control
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Concurrency protocols

• Two-phase locking (2PL)

– Pessimistic approach

– Assume txns will conflict! 

– Acquire locks on all items before accessing them!

• Timestamp ordering (T/O)

– Optimistic approach

– Assume that conflicts are rare! 

– Do not acquire locks, check for conflicts at commit!
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Optimistic Concurrency Control

The Kung-Robinson Model

• Key idea: Timestamp ordering is imposed on transactions, and 
validation phase checks that all conflicting actions occurred in 
the same order.

• If this is not the case, abort the transaction that started later!
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Kung-Robinson Model

• Txns have three phases:

– READ:  txns read from the database, but make changes to private 
copies of objects.

– VALIDATE:  Check for conflicts.

– WRITE: Make local copies of changes public.

ROOT

old

new
modified

objects
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Validation

• Test conditions that are sufficient to ensure that no conflict 
occurred.

• Each txn assigned a numeric id.

– Just use a timestamp.

– Txn ids assigned at end of READ phase, just before validation begins.

• ReadSet(Ti):  Set of objects read by txn Ti.

• WriteSet(Ti): Set of objects modified by Ti.
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Test 1

• For all i and j such that Ti < Tj, check that Ti completes before Tj

begins.

Ti

TjR V W

R V W
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Test 2

• For all i and j such that Ti < Tj, check that:

– Ti completes before Tj begins its Write phase

– WriteSet(Ti) ⋂ ReadSet(Tj)  is empty.

Ti

Tj

R V W

R V W

✓ “Does Tj read dirty data?”
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Test 3

• For all i and j such that Ti < Tj, check that:

– Ti completes Read phase before Tj does +

– WriteSet(Ti) ⋂ ReadSet(Tj)  is empty +

– WriteSet(Ti) ⋂WriteSet(Tj)  is empty.

Ti

Tj

R V W

R V W

✓ “Does Tj read dirty data?”
✓ “Does Ti overwrite Tj’s writes?”
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Example: Optimistic CC
T1: R(A), W(A), R(B), W(B) C

T2: R(A), W(A), R(B), W(B) C

T1: R(A), W(A), R(B), W(B)

READ VALIDATE WRITE 

T2: R(A), W(A), R(B), W(B)

READ VALIDATE  WRITE
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Example: Optimistic CC

• Validation of T2:

– Test 1: ???

• For all i and j such that Ti < Tj, check that Ti completes 
before Tj begins.

T1: R(A), W(A), R(B), W(B)

READ VALIDATE WRITE 

T2: R(A), W(A), R(B), W(B)

READ VALIDATE  WRITE
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Example: Optimistic CC

• Validation of T2:

– Test 1: fails Test 2: ???

For all i and j such that Ti < Tj, check that:
• Ti completes before Tj begins its Write phase
• WriteSet(Ti) ⋂ ReadSet(Tj)  is empty.

T1: R(A), W(A), R(B), W(B)

READ VALIDATE WRITE 

T2: R(A), W(A), R(B), W(B)

READ VALIDATE WRITE
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Example: Optimistic CC

• Validation of T2:

– Test 1: fails Test 2: fails Test 3: ???

For all i and j such that Ti < Tj, check that:
• Ti completes Read phase before Tj does +
• WriteSet(Ti) ⋂ ReadSet(Tj)  is empty +
• WriteSet(Ti) ⋂WriteSet(Tj)  is empty.

T1: R(A), W(A), R(B), W(B)

READ VALIDATE WRITE 

T2: R(A), W(A), R(B), W(B)

READ VALIDATE WRITE
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Example: Optimistic CC

• Validation of T2:

– Test 1: fails Test 2: fails Test 3: fails

T2 gets restarted once T1 is completely finished

T1: R(A), W(A), R(B), W(B)

READ VALIDATE WRITE 

T2: R(A), W(A), R(B), W(B)

READ VALIDATE WRITE
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Comments on Validation

• Assignment of txn id, validation, and the Write phase are 
inside a critical section!

– Nothing else goes on concurrently.

– If validation/write phase is long, major drawback!

• Optimization for Read-only txns:

– Shorter critical section 
(because there is no Write phase).
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Overheads in Optimistic CC

• Record read/write activity in ReadSet and WriteSet per txn.

– Must create and destroy these sets as needed.

• Check for conflicts during validation, and make validated 
writes “global”.

– Critical section can reduce concurrency.

• Optimistic CC restarts txns that fail validation.

– Work done so far is wasted.

– Requires clean-up.
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Continuous, per-object validation

Timestamp-based CC

• Optimistic CC: Timestamp ordering is imposed on transactions, 
and validation checks that all conflicting actions occurred in 
the same order. 

• Timestamp-based CC

– Continuous validation – not a distinct phase

– Keep read and write timestamps per object, and starting timestamp 
of each txn

– Compare txn timestamp with read/write timestamps of the objects 
in order to decide between:

• Continue, Abort, Commit, Skip write

49



Timestamp-based CC

Idea:

• Txn timestamp TS  begin time

• Object: read-timestamp (RTS) and a write-timestamp (WTS)

– If action ai of txn Ti conflicts with action aj of txn Tj, and TS(Ti) < TS(Tj), 
then ai must occur before aj.  Otherwise, restart violating txn.

– Use RTS, WTS to detect conflicts.

50

Object Read-timestamp Write-Timestamp

A 10 4

B 15 13

… … …



When txn T wants to READ Object O

• TS(T) < WTS(O): violates timestamp order of T w.r.t. writer of 
O.

– Abort T and restart it with a new, higher TS.

• TS(T) >= WTS(O):

– Allow T to read O.

– Reset RTS(O) to max(RTS(O), TS(T))

• Change to RTS(O) on reads must be written in some persistent 
fashion → overhead.
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When txn T wants to write Object O

• TS(T) < RTS(O): violates timestamp order of T w.r.t. reader of O 
→ abort and restart T.

• TS(T) < WTS(O) → violates timestamp order of T w.r.t. writer of 
O. → ???
– Thomas Write Rule:  Outdated write → Safely ignore the write –it’s 

as if the write happened before and was overwritten

– need not restart T! 

– Allows some serializable schedules (correct) that are not conflict 
serializable.

• Else, allow T to write O (and update WTS(O)).
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Timestamp-based CC and Recoverability

• Unrecoverable schedules are possible

• Solution
– Make changes of T1 in a memory buffer and block T2 from committing

– Write changes to disk ONLY at commit

T1     T2

W(A)

R(A)

W(B)

Commit

Abort
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Outline

• Transactions & Concurrency Control

– ACID & Transaction Schedules

– Concurrency control protocols
• Pessimistic

• Optimistic

– Multi-version concurrency control
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Combine with CC => MVTO, MVOCC, MV2PL

Multiversion Concurrency Control

• Goal: A transaction never waits on read!

• Idea 

– Maintain several versions of each database object (multi-version), 
each with a read and a  write timestamp.

– Transaction Ti reads the most recent version whose write timestamp 
precedes TS(Ti), 
i.e., WTS(O)<TS(Ti).

55

Multiversioning is a storage mgmt concept!



Multiversion Concurrency Control

MVCC lets writers make a “new” copy while 
readers use an appropriate “old” copy:

O
O’

O’’

Current

versions of

DB objects.

Older versions that

may be useful for 

some active readers.

56

MAIN

SEGMENT VERSION POOL



MV + Timestamp Ordering (MVTO)

For each version

• WTS: the timestamp of the txn that created it

• RTS: the timestamp of the txn that last read it

• Versions are (usually) chained backward; we can discard 
versions that are “too old to be of interest” (i.e., garbage 
collection).

• Each txn is classified as Reader or Writer.

– Writer may write some object; Reader never will.

– Txn declares whether it is a Reader when it begins.

• Readers are always allowed to proceed. 57



Readers always proceed

Reader txn

• For each object to be read:

– Finds newest version with WTS < TS(T): Starts with current version in 
the main segment and chains backward through earlier versions.

– Updates RTS to MAX(RTS, TS(T)).

• Reader txns are never restarted.

T

old                       new
WTS timeline
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Writers create new copy 
(…if no younger transaction has read the data)

(…and if no active xaction holds V’s lock )

Writer txn

• To read an object, follow reader protocol.

• To write an object:

– Finds newest version V

– RTS(V) > TS(T): Reject write

– RTS(V) ≤ TS(T): T makes a copy CV of V, with a pointer to V, with 
WTS(CV) = TS(T), RTS(CV) = TS(T).

• Write is buffered / locked until T commits; other txns cannot read version CV.
WHY????
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Bottlenecks

• Lock thrashing
– 2PL, Strict 2PL

• Timestamp allocation
– All T/O algorithms + deadlock prevention

• Memory allocation
– MVCC, OCC
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Improving performance of txn

Goal is to 

• reduce conflicts

• reduce time spent on each transaction

Three key approaches

• Stored procedures --> faster

• Prepared statements --> precompiled

• Query batches --> batch locking
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Snapshot isolation

• Snapshot isolation (SI) is the most popular isolation guarantee
in real DBMS.

– all txn reads will see a consistent snapshot of the database

– the txn successfully commits only if no updates it has made conflict 
with any concurrent updates made since that snapshot.

• SI does not guarantee serializability!

– SerializableSI: Stronger, more conservative protocol

• Implemented in Oracle, MS SQL Server, Postgres.
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Snapshot isolation

• Conceptually, txn works on a copy of the db made at txn start 
time.
– Very expensive → not implemented that way but still expensive.

– Guarantees that reads in the txn see a consistent version of the db.

• At commit time, verify that the values changed by the transaction 
have not been changed by other transactions since the snapshot 
was taken.

• Write skew anomaly

– Not serializable, but permitted by snapshot isolation!
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T1: R(X)R(Y) W(X)  C

T2: R(X)R(Y)           W(Y)   C



Write skew – (more concrete) example

64

[Source: Martin Kleppmann]



Discussion

• SI is related to optimistic CC, in that

– Conceptually, snapshots are created at txn start.

– There is an analysis phase at the end to decide whether a transaction 
may commit (do writesets overlap?).

• Multiversion CC is a way to implement 
(a stronger) snapshot isolation.
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