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Definition of transactions

A transaction (txn, or Xact) is a sequence of actions

that are executed on a shared database to perform some
higher-level function.

Transactions are the basic unit of change
in the DBMS. No partial txns are allowed.
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A quick reminder of ACID

e Atomicity: Either all actions in the txn happen, or none.

e Consistency: If each txn is consistent, and the DB starts
consistent, it ends up consistent.

e |solation: Execution of one txn is isolated from other txns.
e Durability: If a txn commits, its effects persist.



Atomicity and Durability

e A transaction might commit after completing all its actions, or
it could abort (or be aborted by the DBMS) after executing
some actions.

e All transactions are atomic.

— A user can think of a txn as always executing all its actions in one
step, or not executing any actions at all.

— DBMS logs all actions so that it can undo the actions of aborted
transactions.

e Durability also relies on logs



Consistency and Isolation

e Each transaction must leave the database in a consistent state.
— DBMS will enforce some integrity constraints.

— Clearly, no semantic consistency.

e Users submit transactions, and expect isolation -- each transaction
executed by itself.

— Concurrency very important for performance: interleaving actions
from different transactions.

— Net effect identical to executing all transactions one after the other
in some serial order.



A note on concurrency

e Several transactions arrive at (almost) the same time

e Need to execute in parallel to fully utilize hardware

T1: R(A) R(B) compute-something W(C) COMMIT

T2: R(E) R(A) R(D) compute-something

T3: R(D) compute-something R(E)

User writes SQL queries.
Translated to actions!



Schedules

e The DBMS gets as input a set of transactions and executes a
schedule.

e Schedule: a list of actions (reading, writing, aborting, or
committing) from a set of txns

— All actions appear in the schedule

— The order in which two actions of a transaction T appear in a
schedule must be the same as the order in which they appearin T.



Example

T1: transfer S100 from B’s account to A’s account.

T2: credit both accounts with a 6% interest payment.

T1:
T2:

BEGIN A=A+100, B=B-100 END
BEGIN A=1.06*A, B=1.06"B END

e There is no guarantee that T1 will execute before T2 or vice-versa, if

both are submitted together.

e Actions of two transactions can interleave!

e However, the net effect must be equivalent to these two transactions

running serially in some order.
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Example (Contd.)

e Consider a possible interleaving schedule:

T1: A=A+100, B=B-100
T2: A=1.06%A, B=1.06"B

e This is OK. But what about:

T1: A=A+100, B=B-100
T2: A=1.06*A, B=1.06*B

e The system’s view of the second schedule:

T1: R(A), W(A), R(B), W(B)
T2: R(A), W(A), R(B), W(B)

- Time )




Scheduling Transactions

e Serial schedule: Schedule that does not interleave the actions of
different transactions.

e Fquivalent schedules: For any database state, the effect (on the set of
objects in the database) of executing the first schedule is identical to
the effect of executing the second schedule.

e Serializable schedule: A schedule that is equivalent to some serial
execution of the transactions.

If each transaction preserves consistency, every serializable schedule
preserves consistency.
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Anomalies with Interleaved Execution

e Reading Uncommitted Data (WR Conflicts, “dirty reads”):

T1:  R(A), W(A), R(B), W(B), Abort
T2: R(A), W(A), C

e Unrepeatable Reads (RW Conflicts):
T1: R(A), R(A), W(A), C
T2: R(A), W(A), C

e Overwriting Uncommitted Data (WW Conflicts):

Tl  W(A), W(B), C
T2: W(A), W(B), C

- Time )




Aborting a Transaction

e If T.is aborted, all its actions have to be undone.

* Cascading aborts: If T; reads an object last written by T;, T
must be aborted as well!

— Alternative to avoid cascading aborts: If T; writes an object, T, can
read this only after T, commits.

e DBMS maintains a write log, in order to be able to undo the

actions of aborted txns.

— Also used to recover from system crashes: all active txns at the time
of the crash are aborted when the system comes back up.
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Conflict Serializable Schedules

e Two schedules are conflict equivalent if:
— They involve the same actions of the same transactions
— Every pair of conflicting actions is ordered the same way

— i.e., we can transform one into the other by swapping non-conflicting
adjacent operations

e Schedule S is conflict serializable if:
— S is conflict equivalent to some serial schedule.

— Intuition: You can transform S into a serial schedule by swapping
consecutive non-conflicting operations of different transactions
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Example

e A schedule that is not conflict serializable:

T1:  R(A), W(A), R(B), W(B)
T2: R(A), W(A), R(B), W(B)
A D
Q ependency graph
! 5 12 a.k.a. precedence graph

* Precedence graph: One node per txn; edge from T;to T; if T,
reads/writes an object last read/written by T..

e The cycle in the graph reveals the problem. The output of T1
depends on T2, and vice-versa.
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Precedence Graph

e Also known as dependency graph/ serializability graph

* Precedence graph: One node per txn; edge from T;to T; if T,
reads/writes an object last read/written by T..

e Theorem: A schedule is conflict serializable if and only if its
dependency graph is acyclic

17



Outline

e Transactions & Concurrency Control
— ACID & Transaction Schedules
— Concurrency control protocols

e Pessimistic
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— Multi-version concurrency control
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Concurrency protocols

e Two-phase locking (2PL)
— Pessimistic approach
— Assume txns will conflict!

— Acquire locks on items before accessing them!
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Lock-Based Concurrency Control

e Transactions acquire locks before reading and writing

e Locking protocol guarantees that schedule will be conflict serializable
(correct) if it completes

— Deadlocks are possible

e Locking granularity can be anything
— Tables, indexes, pages, records

20



Lock-Based Concurrency Control

2PL

Two-Phase Locking (2PL) Protocol

e Rule 1: Each txn obtains
— S (shared) lock before reading
— X (exclusive) lock before writing '
— Sometimes also called read/write locks “

e Rule 2: A txn cannot request additional locks once it releases any locks.

e 2PL allows only schedules whose precedence graph is acyclic => serializable.

#of Locks

Example schedule with locks:
T1: S(A) R(A) S(B) R(B)
T2: X(C) R(C) W(C) S(D) R(D)

- Time )



Lock-Based Concurrency Control

2PL

Two-Phase Locking (2PL) Protocol

e Rule 1: Each txn obtains
— S (shared) lock before reading
— X (exclusive) lock before writing '
— Sometimes also called read/write locks “
e Rule 2: A txn cannot request additional locks once it releases any locks.
e 2PL allows only schedules whose precedence graph is acyclic => serializable.
Strict Two-phase Locking (Strict 2PL) Protocol
e Rule 3: All locks released when the txn completes.
e Strict 2PL additionally simplifies transaction aborts
— (Non-strict) 2PL involves more complex abort processing.

#of Locks

Strict 2PL

# of Locks




Deadlocks

e Deadlock: Cycle of transactions waiting for locks to be released by
each other.

e Two ways of dealing with deadlocks
- Deadlock detection: detect and resolve deadlocks when they are created.
- Deadlock prevention: never let deadlocks happen.
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Deadlock Detection

e If alock request cannot be satisfied, the transaction is
suspended and must wait until the resource becomes

available.

e Create a waits-for graph:

- Nodes are transactions
- Edge from T, to T;if T;is waiting for T, to release a lock

e Periodically check for cycles in the waits-for graph

24



Deadlock Detection (Continued)

Example:

T1

T2:
T3:
T4:

: S(A) R(A) S (B)
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Deadlock Prevention

e Assign priorities based on timestamps.
— Earlier timestamp =2 higher priority
* Assume T; wants a lock that 7; holds.
Two policies:
—- Wait-Die (“old waits for young”):
« If T; has higher priority, T; waits for T,. Otherwise T; aborts
- Wound-wait ("young waits for old”):
« If T;has higher priority, T; aborts. Otherwise T; waits

e If a transaction re-starts, make sure it has its original timestamp

26



Fixed vs dynamic databases

e Fixed tuples
— Set of tuples is fixed
— Can update, but no inserts/deletes

— Can lock all related tuples

UPDATE employees
SET salary=salary*1.2 WHERE age>60

e Dynamic databases
— Can insert/delete tuples

— Cannot lock all related tuples

— INSERT INTO employees (name, age,salary)
VALUES (“"Superman”, 62, 10000)

L
i

27




Dynamic Databases

e |f insertions/deletions are allowed, then even Strict 2PL cannot assure
serializability

— T1: Print the oldest sailors with rating=1 and rating=2

— T2: Insert a sailor with (rating=1,age=96), and delete the oldest sailor
with rating=2

— The results may not correspond to a serial execution = not conflict-
serializable!

28



Dynamic Databases

e If insertions/deletions are allowed (not only updates), then even Strict
2PL cannot assure serializability

— T1 locks all pages containing sailor records with rating = 1, and finds
oldest sailor (age = 71).

— Next, T2 inserts a new sailor; rating = 1, age = 96.

— T2 also deletes oldest sailor with rating = 2 (age = 80), and commits.

— T1 now locks all pages containing sailor records with rating = 2, and
finds oldest (age = 63).

e Not conflict serializable!!!

T1: S(A*) R(A*)
T2:

X(A') I(A’) X(B) D(B)

S(B*) R(B*) W(C)

29



How did serializability break
aka “The phantom menace”

e T1 implicitly assumes that it has locked the set of all sailor
records with rating = 1.

— Assumption only holds if no sailor records are added while T1 is
executing!

e Conflict serializability guarantees serializability only if the set of
objects is fixed!
e Need some mechanism to enforce this assumption.

— (Index locking and predicate locking).

30



Predicate Locking

e Implicitly lock all records (also new) that satisfy a logical
predicate

— l.e., rating=1 or rating=2.

e How would you implement predicate locking?
—\Very expensive

31



Index Locking

e T1 locks the index pages containing the data entries with
rating = 1 and rating = 2.
— Index needs to be updated after the insert = will fail if locked

— If there are no records with rating = 1, T1 must lock the index page
where such a data entry would be, if it existed!

e Special case of predicate locking — more efficient
implementation.

32



Are 2PL protocols always good?

e Locking: Conservative approach in which conflicts are
orevented.

e Disadvantages
— Lock management overhead.

— Deadlock detection/resolution.
— Lock contention for heavily used objects.

e |f conflicts are rare, gain concurrency by not locking, and
instead checking for conflicts before txns commit

33



Outline

e Transactions & Concurrency Control
— ACID & Transaction Schedules
— Concurrency control protocols

e Pessimistic
e Optimistic

— Multi-version concurrency control
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Concurrency protocols

e Two-phase locking (2PL)
— Pessimistic approach
— Assume txns will conflict!

— Acquire locks on all items before accessing them!

e Timestamp ordering (T/O)
— Optimistic approach
— Assume that conflicts are rare!
— Do not acquire locks, check for conflicts at commit!
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Optimistic Concurrency Control

The Kung-Robinson Model

e Keyidea: Timestamp ordering is imposed on transactions, and
validation phase checks that all conflicting actions occurred in
the same order.

e |f this is not the case, abort the transaction that started later!

36



Kung-Robinson Model

e Txns have three phases:

— READ: txns read from the database, but make changes to private
copies of objects.

— VALIDATE: Check for conflicts.
— WRITE: Make local copies of changes public.

modified W J W
objects

37



Validation

e Test conditions that are sufficient to ensure that no conflict
occurred.

e Each txn assigned a numeric id.
— Just use a timestamp.
— Txn ids assigned at end of READ phase, just before validation begins.

e ReadSet(T,): Set of objects read by txn T..
e WriteSet(T.): Set of objects modified by T..

38



Test 1

* ForalliandjsuchthatT,<T, check that T, completes before T,

begins.
Ti
R V W J
5§ |
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Test 2

* ForalliandjsuchthatT,<T, check that:
— T, completes before T, begins its Write phase
— WriteSet(T;) N ReadSet(T;) is empty.

v “Does T, read dirty data?”

L
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Test 3

* ForalliandjsuchthatT,<T, check that:
— T, completes Read phase before T, does +
— WriteSet(T;) 1 ReadSet(T;) is empty +
— WriteSet(T;) N WriteSet(T;) is empty.

R V W

R V W

v “Does T, read dirty data?”
v “Does T; overwrite T;'s writes?”

T;

L
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Example: Optimistic CC

T1:  R(A), W(A), R(B), W(B) C
T2: R(A), W(A), R(B), W(B) C
T1: R(A), W(A), R(B), W(B
READ VALIDATE WRITE
T2: R(A), W(A), R(B), W(B)

READ

VALIDATE WRITE

L
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Example: Optimistic CC

T1: R(A), W(A) R(B), W(B)

READ VALIDATE WRITE
T2: R(A), W(A), R(B), W(B)
READ VALIDATE WRITE

e Validation of T2:
—Test 1; ???

* ForalliandjsuchthatT;<T, check that T; completes
before T, begins.

43



Example: Optimistic CC

T1: R(A), W(A) R(B), W(B)

READ VALIDATE WRITE
T2: R(A), W(A), R(B), W(B)
READ VALIDATE WRITE

e Validation of T2:
— Test 1: fails Test 2: ?7??

For all i and j such that T; < T;, check that:
* T, completes before T, begins its Write phase
*  WriteSet(T;) (1 ReadSet(T;) is empty.

44



Example: Optimistic CC

T1: R(A), W(A) R(B), W(B)

READ VALIDATE WRITE
T2: R(A), W(A), R(B), W(B)
READ VALIDATE WRITE

e Validation of T2:
— Test 1: fails Test 2: fails Test 3; ???

For alliand jsuch that T; < T;, check that:
* T,completes Read phase before T, does +
*  WriteSet(T;) (1 ReadSet(T;) is empty +
*  WriteSet(T;) 1 WriteSet(T;) is empty.

45



Example: Optimistic CC

T1: R(A), W(A) R(B), W(B)

READ VALIDATE WRITE
T2: R(A), W(A), R(B), W(B)
READ VALIDATE WRITE

e Validation of T2:
— Test 1: fails Test 2: fails Test 3: fails

T2 gets restarted once T1 is completely finished

46



Comments on Validation

e Assignment of txn id, validation, and the Write phase are
inside a critical section!

— Nothing else goes on concurrently.
— If validation/write phase is long, major drawback!

e Optimization for Read-only txns:

— Shorter critical section
(because there is no Write phase).

a7



Overheads in Optimistic CC

e Record read/write activity in ReadSet and WriteSet per txn.

— Must create and destroy these sets as needed.

e Check for conflicts during validation, and make validated
writes “global”.

— Critical section can reduce concurrency.

e Optimistic CC restarts txns that fail validation.

— Work done so far is wasted.
— Requires clean-up.

48



Timestamp-based CC

e Optimistic CC: Timestamp ordering is imposed on transactions,
and validation checks that all conflicting actions occurred in
the same order.

e Timestamp-based CC
— Continuous validation — not a distinct phase

— Keep read and write timestamps per object, and starting timestamp
of each txn

— Compare txn timestamp with read/write timestamps of the objects
in order to decide between:

e Continue, Abort, Commit, Skip write

Continuous, per-object validation 29



Timestamp-based CC

Idea:
e Txn timestamp TS €< begin time

e Object: read-timestamp (RTS) and a write-timestamp (WTS)

— If action a; of txn T; conflicts with action a; of txn T;, and TS(T;) < TS(T)),
then a; must occur before a;. Otherwise, restart violating txn.

— Use RTS, WTS to detect conflicts.

m Read-timestamp Write-Timestamp

A 10 4
B 15 13

50



When txn T wants to READ Object O

e TS(T) < WTS(O): violates timestamp order of T w.r.t. writer of
O.

— Abort T and restart it with a new, higher TS.
e TS(T) >= WTS(O):

— Allow T to read O.

— Reset RTS(O) to max(RTS(O), TS(T))

e Change to RTS(O) on reads must be written in some persistent
fashion = overhead.
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When txn T wants to write Object O

e TS(T) < RTS(O): violates timestamp order of T w.r.t. reader of O
— abort and restart T.

e TS(T) < WTS(O) - violates timestamp order of T w.r.t. writer of
0. > ???
— Thomas Write Rule: Outdated write = Safely ignhore the write —it’s
as if the write happened before and was overwritten
— need not restart T!

— Allows some serializable schedules (correct) that are not conflict
serializable.

e Else, allow T to write O (and update WTS(O)).

52



U]
L
i

Timestamp-based CC and Recoverability

e Unrecoverable schedules are possible

T1 T2
W(A)
T R(A)
W(B)
Commit
Abort

e Solution
— Make changes of T1 in a memory buffer and block T2 from committing
— Write changes to disk ONLY at commit

53



Outline

e Transactions & Concurrency Control
— ACID & Transaction Schedules
— Concurrency control protocols

e Pessimistic
e Optimistic

— Multi-version concurrency control
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Multiversion Concurrency Control

e Goal: A transaction never waits on read!
e |dea

— Maintain several versions of each database object (multi-version),
each with a read and a write timestamp.

— Transaction T, reads the most recent version whose write timestamp
precedes TS(T,),
i.e., WTS(O)<TS(T,).

Multiversioning is a storage mgmt concept!
Combine with CC => MVTO, MVOCC, MV2PL
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Multiversion Concurrency Control

MVCC lets writers make a “new” copy while
readers use an appropriate “old” copy:

Current Older versions that
versions of may be useful for
DB objects. some active readers.

MAIN
SEGMENT

- VERSION POOL

56



MV + Timestamp Ordering (MVTO)

For each version
* WTS: the timestamp of the txn that created it
e RTS: the timestamp of the txn that last read it

e Versions are (usually) chained backward; we can discard
versions that are “too old to be of interest” (i.e., garbage
collection).

e Each txn is classified as Reader or Writer.

— Writer may write some object; Reader never will.

— Txn declares whether it is a Reader when it begins.

e Readers are always allowed to proceed. -
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Reader txn

e For each object to be read:

— Finds newest version with WTS < TS(T): Starts with current version in
the main segment and chains backward through earlier versions.

— Updates RTS to MAX(RTS, TS(T)).
e Reader txns are never restarted.

. . old new
WTS timeline >
#
L
T

Readers always proceed

i
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Writer txn

e To read an object, follow reader protocol.
e To write an object:

— Finds newest version V
— RTS(V) > TS(T): Reject write

— RTS(V) < TS(T): T makes a copy CV of V, with a pointer to V, with
WTS(CV) = TS(T), RTS(CV) = TS(T).

e Write is buffered / locked until T commits; other txns cannot read version CV.
WHY?7?7??
Writers create new copy

(...if no younger transaction has read the data)
(...and if no active xaction holds V’s lock ) .



Bottlenecks

e Lock thrashing
— 2PL, Strict 2PL

e Timestamp allocation
— All T/0O algorithms + deadlock prevention

e Memory allocation
— MVCC, OCC

L
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Improving performance of txn

Goal is to
e reduce conflicts
e reduce time spent on each transaction

Three key approaches

e Stored procedures --> faster

e Prepared statements --> precompiled
e Query batches --> batch locking
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Snapshot isolation

e Snapshot isolation (Sl) is the most popular isolation guarantee
in real DBMS.

— all txn reads will see a consistent snapshot of the database

— the txn successfully commits only if no updates it has made conflict
with any concurrent updates made since that snapshot.

e S| does not guarantee serializability!

— SerializableSI: Stronger, more conservative protocol

e Implemented in Oracle, MS SQL Server, Postgres.
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e Conceptually, txn works on a copy of the db made at txn start

time.

Snapshot isolation

— Very expensive =2 not implemented that way but still expensive.

— Guarantees that reads in the txn see a consistent version of the db.

e At commit time, verify that the values changed by the transaction
have not been changed by other transactions since the snapshot

was taken.

e Write skew anomaly

— Not serializable, but permitted by snapshot isolation!

T1:
T2:

R(X)R(Y)

RIX)R(Y)

W(X) C
W(Y) C
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Alice:

1 begin transaction

currently_on_call = (
select count(*) from doctors
where on_call =true
and shift_id = 1234

)

Now currently_on_call =2

 if (currently_on_call >=2) {

raVi

update doctors

set on_call = false Alice

false

where name ="Alice’
and shift_id = 1234
}

Y . .
O commit transaction

name on_call
Alice true
Bob true
Carol false
Bob false
name on_call
Alice false
Bob false
Carol false

O«

Write skew — (more concrete) example

[Source: Martin Kleppmann]

Bob:

begin transaction

currently_on_call = (
select count(*) from doctors
where on_call = true
and shift_id = 1234

)

Now currently_on_call =2

if (currently_on_call >=2) {
update doctors
set on_call =false
where name ='Bob’
and shift_id = 1234

}

commit transaction 64



Discussion

e Slis related to optimistic CC, in that
— Conceptually, snapshots are created at txn start.

— There is an analysis phase at the end to decide whether a transaction
may commit (do writesets overlap?).

e Multiversion CCis a way to implement
(a stronger) snapshot isolation.
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