
CS460
Systems for Data Management and Data Science

Concurrency control
Prof. Anastasia Ailamaki

Data-Intensive Applications and Systems (DIAS) Lab

Consistency protocols
CAP Theorem

Gossip Protocols

Distributed/Decentralized
systems

Data science software stack

Data Processing

Ressource Management & Optimization

Data Storage

Distributed
File Systems

(GFS)

NoSQL DB
Dynamo
Big Table

Cassandra

Distributed
Messging
systems

Kafka

Structured
Data

Spark SQL

Graph Data
Pregel, GraphLab,
X-Streem, Chaos

Machine
Learning

Batch Data
Map Reduce,
Dryad, Spark

Streaming Data
Storm, Naiad, Flink, Spark

Streaming Google Data Flow

Scheduling (Mesos, YARN)Query optimization

Storage
Hierarchies
& Layouts

Transaction
Management

Query
Execution

2

Today’s topic

Outline

• Transactions & Concurrency Control

– ACID & Transaction Schedules

– Concurrency control protocols
• Pessimistic

• Optimistic

– Multi-version concurrency control

3

Definition of transactions

A transaction (txn, or Xact) is a sequence of actions

that are executed on a shared database to perform some
higher-level function.

Transactions are the basic unit of change

in the DBMS. No partial txns are allowed.

4

A quick reminder of ACID

• Atomicity: Either all actions in the txn happen, or none.

• Consistency: If each txn is consistent, and the DB starts
consistent, it ends up consistent.

• Isolation: Execution of one txn is isolated from other txns.

• Durability: If a txn commits, its effects persist.

5

Atomicity and Durability

• A transaction might commit after completing all its actions, or
it could abort (or be aborted by the DBMS) after executing
some actions.

• All transactions are atomic.

– A user can think of a txn as always executing all its actions in one
step, or not executing any actions at all.

– DBMS logs all actions so that it can undo the actions of aborted
transactions.

• Durability also relies on logs

6

Consistency and Isolation

• Each transaction must leave the database in a consistent state.

– DBMS will enforce some integrity constraints.

– Clearly, no semantic consistency.

• Users submit transactions, and expect isolation -- each transaction
executed by itself.

– Concurrency very important for performance: interleaving actions
from different transactions.

– Net effect identical to executing all transactions one after the other
in some serial order.

7

A note on concurrency
• Several transactions arrive at (almost) the same time

• Need to execute in parallel to fully utilize hardware

8

T1:

T2:

T3:

R(A) R(B) compute-something W(C) COMMIT

R(A) R(D) compute-something …R(E)

R(E) compute-something …R(D)

User writes SQL queries.
Translated to actions!

Schedules

• The DBMS gets as input a set of transactions and executes a
schedule.

• Schedule: a list of actions (reading, writing, aborting, or
committing) from a set of txns

– All actions appear in the schedule

– The order in which two actions of a transaction T appear in a
schedule must be the same as the order in which they appear in T.

9

Example

T1: transfer $100 from B’s account to A’s account.

T2: credit both accounts with a 6% interest payment.

• There is no guarantee that T1 will execute before T2 or vice-versa, if
both are submitted together.

• Actions of two transactions can interleave!

• However, the net effect must be equivalent to these two transactions
running serially in some order.

T1: BEGIN A=A+100, B=B-100 END

T2: BEGIN A=1.06*A, B=1.06*B END

10

Example (Contd.)
• Consider a possible interleaving schedule:

• This is OK. But what about:

• The system’s view of the second schedule:

11

T1: A=A+100, B=B-100

T2: A=1.06*A, B=1.06*B

T1: A=A+100, B=B-100

T2: A=1.06*A, B=1.06*B

T1: R(A), W(A), R(B), W(B)

T2: R(A), W(A), R(B), W(B)

Time

Scheduling Transactions

• Serial schedule: Schedule that does not interleave the actions of
different transactions.

• Equivalent schedules: For any database state, the effect (on the set of
objects in the database) of executing the first schedule is identical to
the effect of executing the second schedule.

• Serializable schedule: A schedule that is equivalent to some serial
execution of the transactions.

If each transaction preserves consistency, every serializable schedule
preserves consistency.

12

Anomalies with Interleaved Execution

• Reading Uncommitted Data (WR Conflicts, “dirty reads”):

• Unrepeatable Reads (RW Conflicts):

• Overwriting Uncommitted Data (WW Conflicts):

13

T1: R(A), W(A), R(B), W(B), Abort

T2: R(A), W(A), C

T1: R(A), R(A), W(A), C

T2: R(A), W(A), C

T1: W(A), W(B), C

T2: W(A), W(B), C

Time

Aborting a Transaction

• If Ti is aborted, all its actions have to be undone.

• Cascading aborts: If Tj reads an object last written by Ti, Tj

must be aborted as well!

– Alternative to avoid cascading aborts: If Ti writes an object, Tj can
read this only after Ti commits.

• DBMS maintains a write log, in order to be able to undo the
actions of aborted txns.

– Also used to recover from system crashes: all active txns at the time
of the crash are aborted when the system comes back up.

14

Conflict Serializable Schedules

• Two schedules are conflict equivalent if:

– They involve the same actions of the same transactions

– Every pair of conflicting actions is ordered the same way

– i.e., we can transform one into the other by swapping non-conflicting
adjacent operations

• Schedule S is conflict serializable if:

– S is conflict equivalent to some serial schedule.

– Intuition: You can transform S into a serial schedule by swapping
consecutive non-conflicting operations of different transactions

15

Example
• A schedule that is not conflict serializable:

• Precedence graph: One node per txn; edge from Ti to Tj if Tj

reads/writes an object last read/written by Ti.

• The cycle in the graph reveals the problem. The output of T1
depends on T2, and vice-versa.

16

T1: R(A), W(A), R(B), W(B)

T2: R(A), W(A), R(B), W(B)

T1 T2

A

B

Dependency graph

a.k.a. precedence graph

Precedence Graph

• Also known as dependency graph/ serializability graph

• Precedence graph: One node per txn; edge from Ti to Tj if Tj

reads/writes an object last read/written by Ti.

• Theorem: A schedule is conflict serializable if and only if its
dependency graph is acyclic

17

Outline

• Transactions & Concurrency Control

– ACID & Transaction Schedules

– Concurrency control protocols
• Pessimistic

• Optimistic

– Multi-version concurrency control

18

Concurrency protocols

• Two-phase locking (2PL)

– Pessimistic approach

– Assume txns will conflict!

– Acquire locks on items before accessing them!

19

Lock-Based Concurrency Control

• Transactions acquire locks before reading and writing

• Locking protocol guarantees that schedule will be conflict serializable
(correct) if it completes

– Deadlocks are possible

• Locking granularity can be anything

– Tables, indexes, pages, records

20

Lock-Based Concurrency Control
Two-Phase Locking (2PL) Protocol

• Rule 1: Each txn obtains

– S (shared) lock before reading

– X (exclusive) lock before writing

– Sometimes also called read/write locks

• Rule 2: A txn cannot request additional locks once it releases any locks.

• 2PL allows only schedules whose precedence graph is acyclic => serializable.

21

Example schedule with locks:
T1: S(A) R(A) S(B) R(B)
T2: X(C) R(C) W(C) S(D) R(D)

Time

#
 o

f
Lo

ck
s

2PL

Time

Lock-Based Concurrency Control
Two-Phase Locking (2PL) Protocol

• Rule 1: Each txn obtains

– S (shared) lock before reading

– X (exclusive) lock before writing

– Sometimes also called read/write locks

• Rule 2: A txn cannot request additional locks once it releases any locks.

• 2PL allows only schedules whose precedence graph is acyclic => serializable.

Strict Two-phase Locking (Strict 2PL) Protocol

• Rule 3: All locks released when the txn completes.

• Strict 2PL additionally simplifies transaction aborts

– (Non-strict) 2PL involves more complex abort processing.

22

#
 o

f
Lo

ck
s

Strict 2PL

#
 o

f
Lo

ck
s

2PL

Time

Time

Deadlocks

• Deadlock: Cycle of transactions waiting for locks to be released by
each other.

• Two ways of dealing with deadlocks

– Deadlock detection: detect and resolve deadlocks when they are created.

– Deadlock prevention: never let deadlocks happen.

23

Deadlock Detection

• If a lock request cannot be satisfied, the transaction is
suspended and must wait until the resource becomes
available.

• Create a waits-for graph:

– Nodes are transactions

– Edge from Ti to Tj if Ti is waiting for Tj to release a lock

• Periodically check for cycles in the waits-for graph

24

Deadlock Detection (Continued)
Example:

T1: S(A) R(A) S(B)
T2: X(B) W(B) X(C)

T3: S(C) R(C) X(A)

T4: X(B)

T1 T2

T4 T3

T1 T2

T4 T3

25

Deadlock Prevention

• Assign priorities based on timestamps.

– Earlier timestamp → higher priority

• Assume Ti wants a lock that Tj holds.
Two policies:

– Wait-Die (“old waits for young”):

• If Ti has higher priority, Ti waits for Tj. Otherwise Ti aborts

– Wound-wait (”young waits for old”):

• If Ti has higher priority, Tj aborts. Otherwise Ti waits

• If a transaction re-starts, make sure it has its original timestamp

26

Fixed vs dynamic databases

• Fixed tuples

– Set of tuples is fixed

– Can update, but no inserts/deletes

– Can lock all related tuples
UPDATE employees

SET salary=salary*1.2 WHERE age>60

• Dynamic databases

– Can insert/delete tuples

– Cannot lock all related tuples

– INSERT INTO employees(name,age,salary)

VALUES(“Superman”, 62, 10000) 27

Dynamic Databases

• If insertions/deletions are allowed, then even Strict 2PL cannot assure
serializability

– T1: Print the oldest sailors with rating=1 and rating=2

– T2: Insert a sailor with (rating=1,age=96), and delete the oldest sailor
with rating=2

– The results may not correspond to a serial execution → not conflict-
serializable!

28

Dynamic Databases

• If insertions/deletions are allowed (not only updates), then even Strict
2PL cannot assure serializability

– T1 locks all pages containing sailor records with rating = 1, and finds
oldest sailor (age = 71).

– Next, T2 inserts a new sailor; rating = 1, age = 96.

– T2 also deletes oldest sailor with rating = 2 (age = 80), and commits.

– T1 now locks all pages containing sailor records with rating = 2, and
finds oldest (age = 63).

• Not conflict serializable!!!

29

T1: S(A*) R(A*) S(B*) R(B*) W(C)

T2: X(A’) I(A’) X(B) D(B)

How did serializability break
aka “The phantom menace”

• T1 implicitly assumes that it has locked the set of all sailor
records with rating = 1.

– Assumption only holds if no sailor records are added while T1 is
executing!

• Conflict serializability guarantees serializability only if the set of
objects is fixed!

• Need some mechanism to enforce this assumption.

– (Index locking and predicate locking).
30

Predicate Locking

• Implicitly lock all records (also new) that satisfy a logical
predicate

– I.e., rating=1 or rating=2.

• How would you implement predicate locking?

– Very expensive

31

Index Locking

• T1 locks the index pages containing the data entries with
rating = 1 and rating = 2.

– Index needs to be updated after the insert → will fail if locked

– If there are no records with rating = 1, T1 must lock the index page
where such a data entry would be, if it existed!

• Special case of predicate locking – more efficient
implementation.

32

Are 2PL protocols always good?

• Locking: Conservative approach in which conflicts are
prevented.

• Disadvantages

– Lock management overhead.

– Deadlock detection/resolution.

– Lock contention for heavily used objects.

• If conflicts are rare, gain concurrency by not locking, and
instead checking for conflicts before txns commit

33

Outline

• Transactions & Concurrency Control

– ACID & Transaction Schedules

– Concurrency control protocols
• Pessimistic

• Optimistic

– Multi-version concurrency control

34

Concurrency protocols

• Two-phase locking (2PL)

– Pessimistic approach

– Assume txns will conflict!

– Acquire locks on all items before accessing them!

• Timestamp ordering (T/O)

– Optimistic approach

– Assume that conflicts are rare!

– Do not acquire locks, check for conflicts at commit!

35

Optimistic Concurrency Control

The Kung-Robinson Model

• Key idea: Timestamp ordering is imposed on transactions, and
validation phase checks that all conflicting actions occurred in
the same order.

• If this is not the case, abort the transaction that started later!

36

Kung-Robinson Model

• Txns have three phases:

– READ: txns read from the database, but make changes to private
copies of objects.

– VALIDATE: Check for conflicts.

– WRITE: Make local copies of changes public.

ROOT

old

new
modified

objects

37

Validation

• Test conditions that are sufficient to ensure that no conflict
occurred.

• Each txn assigned a numeric id.

– Just use a timestamp.

– Txn ids assigned at end of READ phase, just before validation begins.

• ReadSet(Ti): Set of objects read by txn Ti.

• WriteSet(Ti): Set of objects modified by Ti.

38

Test 1

• For all i and j such that Ti < Tj, check that Ti completes before Tj

begins.

Ti

TjR V W

R V W

39

Test 2

• For all i and j such that Ti < Tj, check that:

– Ti completes before Tj begins its Write phase

– WriteSet(Ti) ⋂ ReadSet(Tj) is empty.

Ti

Tj

R V W

R V W

✓ “Does Tj read dirty data?”

40

Test 3

• For all i and j such that Ti < Tj, check that:

– Ti completes Read phase before Tj does +

– WriteSet(Ti) ⋂ ReadSet(Tj) is empty +

– WriteSet(Ti) ⋂WriteSet(Tj) is empty.

Ti

Tj

R V W

R V W

✓ “Does Tj read dirty data?”
✓ “Does Ti overwrite Tj’s writes?”

41

Example: Optimistic CC
T1: R(A), W(A), R(B), W(B) C

T2: R(A), W(A), R(B), W(B) C

T1: R(A), W(A), R(B), W(B)

READ VALIDATE WRITE

T2: R(A), W(A), R(B), W(B)

READ VALIDATE WRITE

42

Example: Optimistic CC

• Validation of T2:

– Test 1: ???

• For all i and j such that Ti < Tj, check that Ti completes
before Tj begins.

T1: R(A), W(A), R(B), W(B)

READ VALIDATE WRITE

T2: R(A), W(A), R(B), W(B)

READ VALIDATE WRITE

43

Example: Optimistic CC

• Validation of T2:

– Test 1: fails Test 2: ???

For all i and j such that Ti < Tj, check that:
• Ti completes before Tj begins its Write phase
• WriteSet(Ti) ⋂ ReadSet(Tj) is empty.

T1: R(A), W(A), R(B), W(B)

READ VALIDATE WRITE

T2: R(A), W(A), R(B), W(B)

READ VALIDATE WRITE

44

Example: Optimistic CC

• Validation of T2:

– Test 1: fails Test 2: fails Test 3: ???

For all i and j such that Ti < Tj, check that:
• Ti completes Read phase before Tj does +
• WriteSet(Ti) ⋂ ReadSet(Tj) is empty +
• WriteSet(Ti) ⋂WriteSet(Tj) is empty.

T1: R(A), W(A), R(B), W(B)

READ VALIDATE WRITE

T2: R(A), W(A), R(B), W(B)

READ VALIDATE WRITE

45

Example: Optimistic CC

• Validation of T2:

– Test 1: fails Test 2: fails Test 3: fails

T2 gets restarted once T1 is completely finished

T1: R(A), W(A), R(B), W(B)

READ VALIDATE WRITE

T2: R(A), W(A), R(B), W(B)

READ VALIDATE WRITE

46

Comments on Validation

• Assignment of txn id, validation, and the Write phase are
inside a critical section!

– Nothing else goes on concurrently.

– If validation/write phase is long, major drawback!

• Optimization for Read-only txns:

– Shorter critical section
(because there is no Write phase).

47

Overheads in Optimistic CC

• Record read/write activity in ReadSet and WriteSet per txn.

– Must create and destroy these sets as needed.

• Check for conflicts during validation, and make validated
writes “global”.

– Critical section can reduce concurrency.

• Optimistic CC restarts txns that fail validation.

– Work done so far is wasted.

– Requires clean-up.

48

Continuous, per-object validation

Timestamp-based CC

• Optimistic CC: Timestamp ordering is imposed on transactions,
and validation checks that all conflicting actions occurred in
the same order.

• Timestamp-based CC

– Continuous validation – not a distinct phase

– Keep read and write timestamps per object, and starting timestamp
of each txn

– Compare txn timestamp with read/write timestamps of the objects
in order to decide between:

• Continue, Abort, Commit, Skip write

49

Timestamp-based CC

Idea:

• Txn timestamp TS  begin time

• Object: read-timestamp (RTS) and a write-timestamp (WTS)

– If action ai of txn Ti conflicts with action aj of txn Tj, and TS(Ti) < TS(Tj),
then ai must occur before aj. Otherwise, restart violating txn.

– Use RTS, WTS to detect conflicts.

50

Object Read-timestamp Write-Timestamp

A 10 4

B 15 13

… … …

When txn T wants to READ Object O

• TS(T) < WTS(O): violates timestamp order of T w.r.t. writer of
O.

– Abort T and restart it with a new, higher TS.

• TS(T) >= WTS(O):

– Allow T to read O.

– Reset RTS(O) to max(RTS(O), TS(T))

• Change to RTS(O) on reads must be written in some persistent
fashion → overhead.

51

When txn T wants to write Object O

• TS(T) < RTS(O): violates timestamp order of T w.r.t. reader of O
→ abort and restart T.

• TS(T) < WTS(O) → violates timestamp order of T w.r.t. writer of
O. → ???
– Thomas Write Rule: Outdated write → Safely ignore the write –it’s

as if the write happened before and was overwritten

– need not restart T!

– Allows some serializable schedules (correct) that are not conflict
serializable.

• Else, allow T to write O (and update WTS(O)).
52

Timestamp-based CC and Recoverability

• Unrecoverable schedules are possible

• Solution
– Make changes of T1 in a memory buffer and block T2 from committing

– Write changes to disk ONLY at commit

T1 T2

W(A)

R(A)

W(B)

Commit

Abort

53

Outline

• Transactions & Concurrency Control

– ACID & Transaction Schedules

– Concurrency control protocols
• Pessimistic

• Optimistic

– Multi-version concurrency control

54

Combine with CC => MVTO, MVOCC, MV2PL

Multiversion Concurrency Control

• Goal: A transaction never waits on read!

• Idea

– Maintain several versions of each database object (multi-version),
each with a read and a write timestamp.

– Transaction Ti reads the most recent version whose write timestamp
precedes TS(Ti),
i.e., WTS(O)<TS(Ti).

55

Multiversioning is a storage mgmt concept!

Multiversion Concurrency Control

MVCC lets writers make a “new” copy while
readers use an appropriate “old” copy:

O
O’

O’’

Current

versions of

DB objects.

Older versions that

may be useful for

some active readers.

56

MAIN

SEGMENT VERSION POOL

MV + Timestamp Ordering (MVTO)

For each version

• WTS: the timestamp of the txn that created it

• RTS: the timestamp of the txn that last read it

• Versions are (usually) chained backward; we can discard
versions that are “too old to be of interest” (i.e., garbage
collection).

• Each txn is classified as Reader or Writer.

– Writer may write some object; Reader never will.

– Txn declares whether it is a Reader when it begins.

• Readers are always allowed to proceed. 57

Readers always proceed

Reader txn

• For each object to be read:

– Finds newest version with WTS < TS(T): Starts with current version in
the main segment and chains backward through earlier versions.

– Updates RTS to MAX(RTS, TS(T)).

• Reader txns are never restarted.

T

old new
WTS timeline

58

Writers create new copy
(…if no younger transaction has read the data)

(…and if no active xaction holds V’s lock)

Writer txn

• To read an object, follow reader protocol.

• To write an object:

– Finds newest version V

– RTS(V) > TS(T): Reject write

– RTS(V) ≤ TS(T): T makes a copy CV of V, with a pointer to V, with
WTS(CV) = TS(T), RTS(CV) = TS(T).

• Write is buffered / locked until T commits; other txns cannot read version CV.
WHY????

59

Bottlenecks

• Lock thrashing
– 2PL, Strict 2PL

• Timestamp allocation
– All T/O algorithms + deadlock prevention

• Memory allocation
– MVCC, OCC

60

Improving performance of txn

Goal is to

• reduce conflicts

• reduce time spent on each transaction

Three key approaches

• Stored procedures --> faster

• Prepared statements --> precompiled

• Query batches --> batch locking

61

Snapshot isolation

• Snapshot isolation (SI) is the most popular isolation guarantee
in real DBMS.

– all txn reads will see a consistent snapshot of the database

– the txn successfully commits only if no updates it has made conflict
with any concurrent updates made since that snapshot.

• SI does not guarantee serializability!

– SerializableSI: Stronger, more conservative protocol

• Implemented in Oracle, MS SQL Server, Postgres.

62

Snapshot isolation

• Conceptually, txn works on a copy of the db made at txn start
time.
– Very expensive → not implemented that way but still expensive.

– Guarantees that reads in the txn see a consistent version of the db.

• At commit time, verify that the values changed by the transaction
have not been changed by other transactions since the snapshot
was taken.

• Write skew anomaly

– Not serializable, but permitted by snapshot isolation!

63

T1: R(X)R(Y) W(X) C

T2: R(X)R(Y) W(Y) C

Write skew – (more concrete) example

64

[Source: Martin Kleppmann]

Discussion

• SI is related to optimistic CC, in that

– Conceptually, snapshots are created at txn start.

– There is an analysis phase at the end to decide whether a transaction
may commit (do writesets overlap?).

• Multiversion CC is a way to implement
(a stronger) snapshot isolation.

65

	Default Section
	Slide 1: Concurrency control

	Default Section
	Slide 2: Today’s topic
	Slide 3: Outline
	Slide 4: Definition of transactions
	Slide 5: A quick reminder of ACID
	Slide 6: Atomicity and Durability
	Slide 7: Consistency and Isolation
	Slide 8: A note on concurrency

	txn-schedules
	Slide 9: Schedules
	Slide 10: Example
	Slide 11: Example (Contd.)
	Slide 12: Scheduling Transactions
	Slide 13: Anomalies with Interleaved Execution
	Slide 14: Aborting a Transaction
	Slide 15: Conflict Serializable Schedules
	Slide 16: Example
	Slide 17: Precedence Graph

	2PL
	Slide 18: Outline
	Slide 19: Concurrency protocols
	Slide 20: Lock-Based Concurrency Control
	Slide 21: Lock-Based Concurrency Control
	Slide 22: Lock-Based Concurrency Control
	Slide 23: Deadlocks
	Slide 24: Deadlock Detection
	Slide 25: Deadlock Detection (Continued)
	Slide 26: Deadlock Prevention
	Slide 27: Fixed vs dynamic databases
	Slide 28: Dynamic Databases
	Slide 29: Dynamic Databases
	Slide 30: How did serializability break aka “The phantom menace”
	Slide 31: Predicate Locking
	Slide 32: Index Locking
	Slide 33: Are 2PL protocols always good?

	OCC
	Slide 34: Outline
	Slide 35: Concurrency protocols
	Slide 36: Optimistic Concurrency Control
	Slide 37: Kung-Robinson Model
	Slide 38: Validation
	Slide 39: Test 1
	Slide 40: Test 2
	Slide 41: Test 3
	Slide 42: Example: Optimistic CC
	Slide 43: Example: Optimistic CC
	Slide 44: Example: Optimistic CC
	Slide 45: Example: Optimistic CC
	Slide 46: Example: Optimistic CC
	Slide 47: Comments on Validation
	Slide 48: Overheads in Optimistic CC
	Slide 49: Timestamp-based CC
	Slide 50: Timestamp-based CC
	Slide 51: When txn T wants to READ Object O
	Slide 52: When txn T wants to write Object O
	Slide 53: Timestamp-based CC and Recoverability

	mvcc
	Slide 54: Outline
	Slide 55: Multiversion Concurrency Control
	Slide 56: Multiversion Concurrency Control
	Slide 57: MV + Timestamp Ordering (MVTO)
	Slide 58: Reader txn
	Slide 59: Writer txn
	Slide 60: Bottlenecks
	Slide 61: Improving performance of txn
	Slide 62: Snapshot isolation
	Slide 63: Snapshot isolation
	Slide 64: Write skew – (more concrete) example
	Slide 65: Discussion

